Rhino 3D

Implementing GIS Workflows for Architectural Visualisation by Daniel Giuffre

{Figure 1: Workflow Diagram}

{Figure 1: Workflow Diagram}

Previous Post: GIS meets Architecture - why?

In Western Australia, there is a wealth of geometric data collected on everything from landscape topography, building footprints, road networks to seasonal flood mapping. This powerful repository of data is mostly made available to the public through open data initiatives like data.gov.wa.

At ifLAB we work with GIS data within Architectural modelling environments to assist in both decision making and visualisation processes. Our GIS software of choice, the open source QGIS has some 3D capability, but compared to 3D modelling software, it is not a productive environment to work on new designs. We prefer workflows that utilise each software package for the task it best suited for, so while QGIS is excellent as aligning different types of Data, when it comes to 3D modelling, Rhino is our tool of choice.

An example of how we are using GIS data in practice is generating an accurate topological mesh with a high-resolution texture generative from satellite imagery. When we download satellite imagery, we get the option to download a text file that contains information about its geographical coordinates. We use QGIS to align the image with other datasets we have downloaded from data.gov.wa (for example, topographic contours). This avoids having to convert between mapping projections manually.

Exporting everything as a shape file, we bring the information into Grasshopper with our current GIS Plugin on choice; Meerkat. Meerkat has an interface to trim down shape files to a given area. By setting the area to be larger than the downloaded satellite image, we can get all the information we need without processing data from the entire state and overloading the system.

[Figure 2: Mesh and Aerial Texture overlay

[Figure 2: Mesh and Aerial Texture overlay

Within Grasshopper we make a mesh of the points brought in from the contours, and trim it down to the extent of the satellite image. Using the excellent mapping tools from the Human Plugin, it’s simple work to give the new mesh planar mapping, set to the location and dimensions of the original Satellite Image bounds. Within grasshopper we programmatically make a new material with the original image and bake the mesh with the new material and the correct mapping.

The output is similar to a Google Earth 3D model, only because we control the sources of data we use, we have control over the process, and can use it for modelling the way we would use any other piece of geometry in Rhino. We can also rely on the result to be as accurate as the sources of data that we use.

The end result with other sources of data overlaid becomes a useful tool to see how designs respond to their context, with a range of other applications.

[Figure 3: Large contextual 3D model generated in Rhino 3D using GIS data]

[Figure 3: Large contextual 3D model generated in Rhino 3D using GIS data]

[Figure 4: Snapshot of the Rhino 3D viewport, demonstrating the 3D model generated from freely available data sets.]

[Figure 4: Snapshot of the Rhino 3D viewport, demonstrating the 3D model generated from freely available data sets.]

[Figure 5: Snapshot of GIS data in 3D]

[Figure 5: Snapshot of GIS data in 3D]

Optimisation of Facade Panels for The Crest Apartments by Daniel Giuffre

The adoption of computational design enables smaller teams of designers to compete with the larger practices, by implementing digital workflows into their everyday. This is also true for fabricators who will inevitable find themselves pressured by demands for realising complex geometry and advances in technology.

Read More

Automated Modeling + Drawings from Site Measurements by Daniel Giuffre

if/Lab has created a workflow for automating the modeling and documentation of panels from site measures that saves time and increases accuracy without the need for costly scanning technology- just a pen and a tape measure.

For the Forrest Chase redevelopment in Perth’s CBD, if/Lab has assisted Denmac with the documentation of sheet metal panels by creating a seamless workflow that takes site measurements and outputs models, drawings and laser cutting files. 

Read More

Shop Drawing Automation with Rhino and Grasshopper by Daniel Giuffre

At if/Lab, digital workflows underpin our daily practice. We are continually looking to develop our tools which include optimising information from digital design models to speed up traditional shop drawing processes and achieve new levels of efficiency and accuracy in the digital design workflow that support the complexities of construction.

Read More

Rhino 3D + Grasshopper Sheet Metal Bending by Daniel Giuffre

if/LAB has extended the functionality of Rhino 3D allow for the modelling and unrolling of sheet metal. This bypasses the need for additional solid modelling software to accurately design for the fabrication of sheet metal and allows for seamless integration of design models from file to fabrication reducing time, cost and tolerances.

Read More

Rhino 3D to Autodesk Inventor: Sheet Metal by Daniel Giuffre

if/LAB in collaboration with Denmac have developed an automated sheet metal workflow that takes design models through to fabrication by linking Rhino 3D with Autodesk’s Inventor. This process increases fabrication efficiency by reducing need for remodelling, decreasing lead times and costs, whilst increasing accuracy and adaptability to onsite and design changes.

Read More